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Abstract

In this thesis biological cellular signalling networks are modelled and interrogated. We

make use of two state-of-the-art formal reasoning tools: Symbolic Analysis Laboratory

(SAL) and NuSMV. Using Perl scripts, we generate SAL and NuSMV specifications that

model the cellular networks. We do this by translating a specification produced from cu-

rated Maude models.

Throughout our experiments we use Temporal Logic queries to compare the efficiency

of generating cellular execution paths. We propose several rules of thumb, that should be

used as a guide when deciding which of the SAL or NuSMV tools would be best to use to

answer a given query if integrated into the Pathway Logic Assistant (PLA). PLA is a tool

that supports visualization and interaction with the biological models. The underlying

infrastructure for the PLA is the Interoperability Platform (IOP), a system that allows

tools to interact and interoperate.

We also implement and integrate in IOP two classes of SAL actors. The intended out-

come is to make communication possible between Maude and SAL. Currently, any IOP

user can communicate with SAL via the SAL actors.

We explain the difficulties and reasons for implementing two classes of SAL actors,

showing that the tools within SAL fit into two categories: the first category contains pro-

grams that terminate after executing a request, and the second category contains systems

programmed as a “read-eval-print” loop.

iv



Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

2 Formal Methods Tools 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 SRI tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 SAL’s features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 SAL - Symbolic Model Checker (SAL-SMC) . . . . . . . . . . . . . 4

2.3.2 SAL - Bounded Model Checker (SAL-BMC) . . . . . . . . . . . . . 5

2.3.3 SAL-INF-BMC and SAL-WMC . . . . . . . . . . . . . . . . . . . . 5

2.3.4 Tool selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 NuSMV platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Bounded Model Checker . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Temporal Logic 7

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Linear Temporal Logic (LTL) : Syntax and Semantics . . . . . . . . . . . . 8

3.4 Computation Tree Logic (CTL) : Syntax and Semantics . . . . . . . . . . . 9

4 Model Checking 12

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Symbolic Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

v



4.2.1 SAL Symbolic Model Checker (SAL-SMC) . . . . . . . . . . . . . . 14

4.2.2 NuSMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Bounded Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 The bounded model checking mechanism . . . . . . . . . . . . . . . 15

4.3.2 Safety properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3.3 Invariance Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.3.4 K-induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Pathway Logic 18

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.2 Pathway Logic Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 The Pathway Logic Assistant . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Modelling and Querying Cellular Signalling Networks 22

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 Naming conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3 Signal transduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3.1 EGFR network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3.2 The molecular interaction network of a macrophage . . . . . . . . . 24

6.4 Biological queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Computational results 27

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.2 The concepts of Soup and Dish . . . . . . . . . . . . . . . . . . . . . . . . 27

7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Conclusions and Suggestions for Further Work 32

Bibliography 38

A SAL , NuSMV, Maude and Lola experiments 39

B New Actors integrated in IOP 51

B.1 Actors: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.2 Integrating SAL in IOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vi



B.3 Creating and using the SAL actors . . . . . . . . . . . . . . . . . . . . . . 53

B.3.1 Sample use of SalSpawner and SalActor . . . . . . . . . . . . . . . 53

B.3.2 Sample use of SalWrapper . . . . . . . . . . . . . . . . . . . . . . . 54

vii



List of Tables

7.1 Evaluation of LTL queries in the small dish “ThreeWaysToActRac” . . . . 29

7.2 Evaluation of LTL and CTL queries in the medium dish “EgfDemo” . . . . 29

7.3 Evaluation of LTL and CTL queries in the large dish “Kitano Macrophage” 30

A.1 “ThreeWaysToActRac” dish – G(¬ (Rac1-GTP-CLi)) . . . . . . . . . . . . . . . . 39

A.2 “ThreeWaysToActRac” dish – F(Rac1-GTP-CLi)⇒ ¬(Vav2-act-CLi) U Rac1-GTP-CLi 40

A.3 “ThreeWaysToActRac” dish – F(Rac1-GTP-CLi)⇒¬(¬(EgfR-act-CLm) U Rac1-GTP-CLi) 41

A.4 “ThreeWaysToActRac” dish – F(Rac1-GTP-CLi)⇒ ¬(G(¬(EgfR-act-CLm))) . . . . . 41

A.5 “EgfDemo” dish – G(¬(PIP3-CLm)) . . . . . . . . . . . . . . . . . . . . . . . . 42

A.6 “EgfDemo” dish – AG(¬(PIP3-CLm)) . . . . . . . . . . . . . . . . . . . . . . . 43

A.7 “EgfDemo” dish – F(IP3-CLm)⇒ ¬(PIP3-CLm) U IP3-CLm . . . . . . . . . . . . . 44

A.8 “EgfDemo” dish – F(IP3-CLm)⇒ ¬(¬(PIP3-CLm) U IP3-CLm) . . . . . . . . . . . 45

A.9 “EgfDemo” dish – F(IP3-CLm) ⇒ ¬(G(¬(PIP3-CLm))) . . . . . . . . . . . . . . . 46

A.10 “Kitano Macrophage” dish – G(¬(PIP3-CLm)) . . . . . . . . . . . . . . . . . . . 47

A.11 “Kitano Macrophage” dish– G(¬(Fosgene-on-NUc)) . . . . . . . . . . . . . . . . . 47

A.12 “Kitano Macrophage” dish – AG(¬(Fosgene-on-NUc)) . . . . . . . . . . . . . . . . 48

A.13 “Kitano Macrophage” dish – F(Fosgene-on-NUc)⇒¬(Erk-act-CLi) U Fosgene-on-NUc . 49

A.14 “Kitano Macrophage” dish – F(Fosgene-on-NUc)⇒¬(¬(Erk-act-CLi) U Fosgene-on-NUc) 50

A.15 “Kitano Macrophage” dish – F(Fosgene-on-NUc) ⇒ ¬(G(¬(Erk-act-CLi))) . . . . . . 50

viii



List of Figures

3.1 (a) AG(p): p is invariant. (b) AF(p): p is inevitable. (c) EF(p): p potentially holds. . . 11

4.1 Binary Decision Diagram for (a ∧ b) ∨ (c ∧ d) . . . . . . . . . . . . . . . . . 13

5.1 Pathway for the activation of protein Fak . . . . . . . . . . . . . . . . . . . 21

5.2 The result of invoking Show Maude Rule . . . . . . . . . . . . . . . . . . . 21

ix



Chapter 1

Introduction

This thesis presents the results of modelling and querying biological cellular signalling net-

works, using formal reasoning tools, such as SAL [16], NuSMV [13], Maude [12] and Lola

[1]. The intended outcome of this work is to compare the performances of these tools, and

to find well argued rules of thumb that should be used as a guide when deciding which of

the SAL or NuSMV tools would be best to use to answer a given query if integrated into

the Pathway Logic Assistant [14].

We also implement and integrate in the Interoperability Platform [10] two classes of

SAL actors.The intended outcome is to make communication possible between SAL and

other formal reasoning tools, such as Maude and PVS [15], which are already amongst the

actors available in the IOP platform. We explain the difficulties and reasons for implemen-

ting two classes of actors, by indentifying two categories of SAL tools: the first category

contains programs that terminate after executing a request, and the second category con-

tains systems programmed as a “read-eval-print” loop.

Chapter 2 gives an overview of formal methods and presents two formal reasoning tools

of interest: SAL and NuSMV. We explain which parts of SAL and NuSMV are used in our

work (i.e. sal-smc, sal-bmc, NuSMV -bmc).

Chapter 3 outlines the main concepts involved in Linear Temporal Logic and Compu-

tation Tree Logic.

Chapter 4 presents the main features of symbolic model checking and bounded model

checking. We present the type of properties that can be verified, using state-of-the-art

model checkers, such as SAL and NuSMV.

Chapter 5 presents the basic concepts involved in Pathway Logic. Our experiments

1



2 CHAPTER 1. INTRODUCTION

are largely based on this approach. Thus, we present how Pathway Logic is based on a

powerful logic called “Rewriting Logic” implemented in Maude. Using Pathway Logic,

biological models can be described at very different levels of abstraction, dynamic pathways

can be generated using search and model checking techniques, and Maude models can be

transformed into Petri nets for analysis and visualization.

Chapter 6 presents the subject of our experiments: biological cellular signalling net-

works. We give an overview of fundamental biological concepts such as signal transduction,

naming conventions, activation of biological elements and biological networks used in our

work. We also present the types of biological queries used in our experiments, expressed

in Linear Temporal Logic and Computation Tree Logic.

Chapter 7 contains the core results of our work and compares the performances of the

formal reasoning tools used. We also describe the concept of Dish, used throughout our

experiments.

Appropriate conclusions are drawn in chapter 8 and rules of thumb are formulated.

Further improvements and research directions are suggested.

Appendix A contains the core results of our experiments in more detail.

Appendix B presents the implementation details and integration of two classes of SAL

actors into the Interoperability Platform. We present a sample use of these actors.



Chapter 2

Formal Methods Tools

2.1 Introduction

Formal methods are mathematically based techniques used throughout the development

of a system to capture and define system and functional requirements [3]. Some formal

methods are based on set theory and first order predicate calculus. Others are based on

temporal logic, which is an extension of propositional logic to formalize how the truth

values of some propositions alter with the time at which they are evaluated.

Our main interest is to use formal methods based on Linear Temporal Logic (LTL) and

Computation Tree Logic (CTL) in order to analyze the executable models of biological

networks.

2.2 SRI tools

The Computer Science Laboratory from SRI [5] has a long tradition of over 30 years of

building tools to support formal methods. Currently, their most widely used tools are [37]:

• The PVS verification system [15] that provides a specification language in which

mathematical theories and conjectures about them can be specified, together with

an interactive theorem prover that is used to discharge the conjectures.

• The Symbolic Analysis Laboratory (SAL) model checking toolkit [16] that is dedi-

cated to the analysis of computational systems specified as transition relations.

3



4 CHAPTER 2. FORMAL METHODS TOOLS

• The Integrated Canonizer/Solver (ICS) decision procedures toolkit [9] that provides

the deductive core for bounded model checking and automated k-induction in the

SAL toolkit.

• Maude [12], a reflective language and system, that supports logical reflection and

is used to create executable environments for different logics, theorem provers, lan-

guages, and models of computation.

Since SAL is designed for the modular specification of nondeterministic state machines by

means of transition relations, we chose it as a tool for modelling and querying biological

networks.

2.3 SAL’s features

SAL provides a language similar to PVS, but specialized for the specification of state

machines [33]. The core of the SAL language supports the specification of transition

relations or nondeterministic state machines, either as guarded commands or as invariant

definitions, or a combination of the two. The transition relations can be packaged in

parameterized modules that can be composed synchronously or asynchronously.

The current SAL toolset provides explicit state, symbolic, bounded, infinite bounded

and witness model checkers. We are interested in querying biological networks, using LTL

and CTL properties. The state-of-the-art performance in checking LTL and CTL queries

is provided by the symbolic, bounded and witness model checker, as stated in [37]. Below,

we give a short description of the most important SAL tools.

2.3.1 SAL - Symbolic Model Checker (SAL-SMC)

SAL-SMC allows the specification of properties in Linear Temporal Logic. LTL formu-

las state properties about each linear path induced by a transition system or module.

SAL-SMC tries to prove valid LTL properties and to generate counterexamples for invalid

properties. SAL-SMC uses ICS as its default satisfiability (SAT) solver for optimising and

delivering performance comparable to other state-of-the-art symbolic model checkers, like

NuSMV [13].
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2.3.2 SAL - Bounded Model Checker (SAL-BMC)

SAL-BMC also uses Linear Temporal Logic as its assertion language and specializes in

finding finite counterexamples, no longer than some specified depth. By default, SAL-BMC

uses ICS as its SAT solver, but can be optionally instructed to use other SAT solvers, like

zChaff [20], BerkMin [6] or Siege [17]. We exploited this capability when we had to reduce

the execution time and compare different LTL queries on complex networks.

2.3.3 SAL-INF-BMC and SAL-WMC

The infinite bounded model checker SAL-INF-BMC specializes in finding symbolic coun-

terexamples, like its finite counterpart SAL-BMC. It provides a mechanism of checking

infinite state systems defined over reals, integers, propositional calculus and propositional

sets[33]. SAL-INF-BMC uses ICS [9] as its default SAT solver. It can be instructed to

use other SAT solvers like UCLID [19], SVC [18] , CVC [7] or CVC-Lite [8], but with

restrictions and without generating counterexamples.

There are two reasons that we have used SAL-BMC rather than SAL-INF-BMC in our

experiments. Firstly, SAL-INF-BMC cannot reduce its computation time efficiently, when

generating counterexamples for invalid LTL properties. Secondly, the biological models

analyzed in our experiments are in fact finite state models.

The witness model checker SAL-WMC implements a novel approach that constructs

both symbolic witnesses (for true properties) and counterexamples (for false properties)

for assertions in full CTL [37]. However, SAL-WMC never worked successfully in our

experiments.

2.3.4 Tool selection

It is worth mentioning that SAL-SMC and SAL-BMC proved to be SAL’s most efficient

tools in our experiments. Thus, our decision was to concentrate our experiments on using

the symbolic model checker and the bounded model checker from the SAL toolset. These

two model checkers were sometimes able to deal even with CTL queries, as shown in our

experiments.
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2.4 NuSMV platform

NuSMV is a robust and flexible platform for symbolic model checking [13], developed as

a joint project between Carnegie Mellon University (CMU) and Istituto per la Ricerca

Scientifica e Tecnologica (IRST). Like SAL, NuSMV is designed for the modular specifica-

tion of nondeterministic state machines by means of transition relations, declaration and

instantiation mechanisms for modules and processes, corresponding to synchronous and

asynchronous composition.

We have used NuSMV in our experiments to model and query biological networks,

using LTL properties. Below, we give a short description of the most important NuSMV

tool, used in our experiments, and presented in [30].

2.4.1 Bounded Model Checker

This tool provides the SAT-based model checking functionalities. Like SAL-BMC, the

bounded model checker within NuSMV (i.e. NuSMV -bmc) also uses Linear Temporal

Logic as its assertion language and is specialized in finding finite counterexamples, no

longer than some specified depth. By default, NuSMV -bmc uses SIM as its SAT solver,

but can be optionally instructed to use other SAT solvers like zChaff [20]. SIM is based

on the Davis-Logemann-Loveland procedure, and proved to be an efficient SAT solver in

our experiments.

Since the experiments in this research thesis are largely based on the Temporal Logic

framework, we provide a basic description of the main concepts involved in Temporal Logic.



Chapter 3

Temporal Logic

3.1 Introduction

Temporal logic is one of the largest and most active areas of philosophic logic. It was

introduced around 1960 by Arthur Prior under the name of Tense Logic. Temporal logic is

used to describe any system of states and rules, and reason about propositions qualified in

terms of time [46]. If predicate logic allows reasoning about a state, temporal logic allows

reasoning about sequences of states.

3.2 Background

The semantics of temporal logic is defined in terms of Kripke structures [4].

Definition 1 A Kripke structure is a tuple M :=< S,R, S0, A, P > where:

• S is a set of states

• R ⊆ S × S is a transition relation

• S0 ⊆ S is a set of initial states

• A is a set of atomic propositions.

• P : S → ρ(A) labels each state with the set of atomic propositions satisfied by the

state.

7
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A Kripke structure is also known as a labelled state transition graph.

Given some atomic formulas A, B, . . ., our interest is to formulate new propositions

about A, B, . . ., that will hold at some points of time in the future. Basic temporal

operators were introduced to handle this situations [2]:

• The next time operator ©A states that A holds at the next point of time in the

future.

• The always/henceforth operator 2A states that A holds at all coming points of

time in the future.

• The eventually/sometime operator 3A states that A holds at some point of time

in the future.

If a state sn ∈ S satisfies a formula A at some point in the future, we are interested

in building a path that leads to sn via a sequence of states according to the transition

relation.Therefore, we use the definition stated in [4], to define a path π in a Kripke

structure M :

Definition 2 A path in a Kripke structure M is an infinite sequence of states

π := s0s1 . . . ∈ S such that s0 ∈ S0 and for all i ≥ 0, we have (si, si+1) ∈ R in which case

we write si → si+1.

3.3 Linear Temporal Logic (LTL) : Syntax and Se-

mantics

Linear Temporal Logic reflects a linear and discrete nature of time. Each point in time

has in LTL one unique possible future. LTL has the following temporal operators:

• Gp is the equivalent of the always operator 2p, and states that it is always going to

be the case that p holds.

• Fp is the equivalent of the eventually operator 3p, and states that it will be the case

at some state in the future that p holds.

• Xp is the equivalent of the next time operator©p, and states that in the immediately

succeeding state it will be the case that p holds.
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• p U q or the until operator states that p will hold until at some point in the future q

will hold.

We use the definition stated in [4] to specify when a path beginning at state s satisfies a

given formula:

Definition 3 We say that a state s of a Kripke structure M :=< S,R, S0, A, P > satisfies

a formula p, written s |= p iff for every path π in M , starting at s, we have π |= p.

These kind of paths that satisfy a given formula or LTL property p are extremely valuable

because it enables us to check whether:

• A formula p will eventually be true on a path π, i.e. Fp or

• A formula p will always be true on a path π, i.e. Gp.

Therefore, we use the definition stated in [29] to specify when a formula p is true along a

path π, in a Kripke structure M . The clauses for ordinary boolean connectives are omitted.

We denote by πk the k-shifted suffix of π, that is πk := sksk+1 . . . .

Definition 4 Given a Kripke structure M , the relation π |= p, which states that a formula

p holds in the path π, is inductively defined as follows:

• π |= p iff s0 |= p, where s0 is the starting state of π,

• π |= Xp iff π1 |= p,

• π |= Fp iff there exists k ≥ 0 such that πk |= p,

• π |= Gp iff for every k ≥ 0, πk |= p,

• π |= pUq, where q is another formula, iff there exists k ≥ 0 such that πk |= q and

πj |= p for all 0 ≤ j < k.

3.4 Computation Tree Logic (CTL) : Syntax and Se-

mantics

Computation Tree Logic was first introduced by Emerson and Clarke [31]. CTL differs

from LTL in being a branching time logic that allows each time-point to split into a
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variety of possible futures. Hence, LTL concentrates on properties with a single execution

path π = s0s1s2 . . ., while CTL allows quantification over the paths or branches of the

computation tree by using the following operators:

• AGp states that p is globally true along every path.

• EGp states that p is true for all states along at least one path.

• AFp states that along every path there is at least one state in which p holds.

• EFp states that along at least one path there is at least one state in which p holds.

• AXp states that for all immediately succeeding states of the current state, p holds.

• EXp states that there is a successor state where p holds.

• A(pUq) states that for all paths, p holds until a state is reached where q holds.

• E(pUq) states that there is at least one path where p holds until a state is reached

where q holds.

Like in LTL, CTL formulas are evaluated against Kripke structures. The main difference

between LTL and CTL, observed in [52], is that LTL is a path-based framework whereas

CTL is tree-based. This implies the following:

• in LTL, linear time formulas make assertions about a path and when being evaluated

are true or false with respect to this particular path.

• CTL or branching time formulas make assertions about the states of a system so that

their truth values depend on a particular state.

A consequence of these facts is that LTL and CTL formulas coincide if the model considered

has only one path. However, CTL formulas like EF(p) which states that “p potentially

holds” are not expressible in LTL. On the other hand, strong fairness properties such

as “every process enabled infinitely often is also executed infinitely often” [38], can be

expressed in LTL as: GF(enabled) => GF(executed), but cannot be expressed in CTL.

The most useful formulas are expressible in both frameworks:

• Safety properties such as “p will always hold”: LTL – G(p), CTL – AG(p).
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• Liveness properties such as “action q must follow action p”:

LTL – G(p ⇒ F(q)), CTL – AG(p ⇒ AF(q)).

The complex semantics of CTL formulas can be understood more clearly, if they are

represented using computation trees, as Clarke et al. have proposed in [31]:

p

p p

p pppp p p

p

p

(b)

p

(a)

(c)

Figure 3.1: (a) AG(p): p is invariant. (b) AF(p): p is inevitable. (c) EF(p): p potentially holds.

Our experiments are largely based on symbolic and bounded model checking using LTL and

CTL assertions. Therefore, we provide a basic description of the main concepts involved

in model checking.



Chapter 4

Model Checking

4.1 Introduction

Model checking is an automatic technique, introduced by Clarke and Allen Emerson [34],

for verifying finite-state reactive systems, such as sequential circuit designs and commu-

nication protocols. The finite-state systems are modelled as state-transition graphs and

specifications are expressed in propositional logic.

The usual search procedure is to determine automatically if the specifications are

satisfied by the state-transition graph. The model checker will either return with the

answer true, indicating that the model satisfies the specification, or give a counterexample

execution path that shows why the specification or formula is not satisfied.

Model checking was initially unable to deal with very large systems which had billions

of states. This was called the state explosion problem. A first attempt to solve the state

explosion problem is the technique called symbolic model checking.

4.2 Symbolic Model Checking

The introduction of symbolic model checking increased the capacity of model checking and

made it a standard in the hardware industry [23]. The main idea behind it was to repre-

sent the transition relations in the state-transition graph using Binary Decision Diagrams

(BDDs). A binary decision diagram is a binary decision tree, optimised by merging iso-

morphic subtrees. Thus, a BDD is a directed acyclic graph (DAG) for representing boolean

functions [32]. Boolean functions can only take values from {0, 1}. BDDs are generally a

12
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useful mechanism for proving specifications for the following reasons, identified in [49]:

• BDDs are a canonical representation for boolean functions so that equivalence tests

are cheap.

• BDDs are especially good at handling the boolean quantification that is needed in

the image computations.

• Sometimes even sets of large cardinality might have a compact BDD representation.

• Automata-theoretic methods can also be represented in symbolic form, using BDDs.

Let’s consider the following Binary Decision Diagram pictured in [34]:

b

c

a

d

1

0

0 1

1

0

0

1

0 1

0 1

Figure 4.1: Binary Decision Diagram for (a ∧ b) ∨ (c ∧ d)

If we would like to check the specification (a ∧ b) ∨ (c ∧ d), then given an assignment of

boolean values to the variables a, b, c, d, it is possible to decide whether the assignment

makes the formula true, by traversing the graph beginning at the root and branching at

each node, based on the value assigned to the variable that labels the node. For example,

the assignment < a← 1, b← 0, c← 1, d← 1 >, leads to a leaf node labelled 1, hence the

formula is true for this assignment.

Therefore, by converting the transition relations to BDDs, a very concise representation

of the finite state system can be obtained. It has been proved that symbolic model checkers

that use BDD representations can sometimes process state spaces with more than 10120
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states [34]. State-of-the-art model checkers with high performances, used in our research

are SAL and NuSMV.

4.2.1 SAL Symbolic Model Checker (SAL-SMC)

Given a SAL module of finite state space and a LTL formula, the SAL symbolic model

checker decides whether the corresponding transition system satisfies the formula [48].

SAL-SMC uses BDDs to represent finite transition relations.

4.2.2 NuSMV

In NuSMV, the symbolic model checker also uses BDDs to represent the transition sys-

tem. For each LTL specification, a tableau able to recognize the behaviours falsifying the

property is built, and composed synchronously with the model [47].

Even though symbolic model checkers, such as SAL-SMC and NuSMV can sometimes

process state spaces with more than 10120 states, the state explosion problem still exists.

The bottleneck of symbolic model checking is the amount of memory required for storing

and manipulating BDDs [26]. The boolean functions required to represent the set of states

can grow exponentially, thus the size of the BDD representations may also explode during

computation [48]. In these cases, symbolic model checking may fail to verify a small

problem with 107 states, because there is no compact BDD representation for the under-

lying transition relation.

A new model checking mechanism called bounded model checking was first proposed by

Biere et al. in 1999 [27]. This new technique was aimed at solving many cases that cannot

be solved by BDD-based techniques.

4.3 Bounded Model Checking

The main idea in bounded model checking is to search for a counterexample in executions

whose length is bounded by some integer k [26]. The bound k is increased until a bug

is found, or some pre-computed “completeness threshold” is reached. The bounded model

checking problem is efficiently reduced to a propositional satisfiability problem (SAT), and

can therefore be solved by SAT methods rather than BDDs.

The state-of-the-art bounded model checkers, like SAL-BMC, SAL-INF-BMC and NuSMV
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-bmc, use internal or external SAT solvers for verifying temporal logic properties. These

bounded model checkers will try to generate counterexamples over computations of length

k, for an invalid LTL or CTL property.

4.3.1 The bounded model checking mechanism

In general, a state-transition system M = (X, I, T ) is characterized by the following

components [28]:

• its state space X.

• a set of initial states I ⊆ X.

• a transition relation T ⊆ X ×X.

Analysis tools such as SAL and NuSMV represent the set of initial states and the transition

relation symbolically as two predicates I(x) and T (x, x
′

), where x
′

represents the value of

x in the next state. The following two definitions stated in [28] are fundamental in defining

the transition system:

Definition 5 A state x ∈ X is considered an initial state iff I(x) holds.

Definition 6 A state x
′

is a successor of x by the transition relation T iff T (x, x
′

) holds,

i.e. (x, x
′

) ∈ T .

4.3.2 Safety properties

In its basic form, bounded model checking searches for counterexamples at depth k ∈ N

to a safety property P , represented symbolically via a predicate P (x). Safety properties

state that nothing bad will happen with certain states in the future. The model checkers

use two different approaches in falsifying safety properties, as stated in [28].

The first approach is to find a finite sequence of states x0, x1, . . . , xk that satisfies the

formula: φ = I(x0) ∧ T (x0, x1) ∧ . . . ∧ T (xk−1, xk) ∧ ¬P (xk)

If such a sequence exists then we can conclude that the transition system M does not satisfy

2P (written GP in SAL and NuSMV), since xk is reachable from the initial state x0 and

does not satisfy P . φ is unsatisfiable means that such a state xk does not exist. However,

the absence of counterexamples to 2P at depth k does not imply that no counterexamples
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exist at a lesser depth.

Another approach is to find a finite sequence of states x0, x1, . . . , xk that satisfies the

formula: ψ = I(x0) ∧ T (x0, x1) ∧ . . . ∧ T (xk−1, xk) ∧ ¬(P (x0) ∨ . . . ∨ P (xk))

If such a sequence exists, we can conclude as above that 2P is not satisfied. With this

new formulation, and provided paths of length k exist, the absence of counterexamples at

depth k implies the absence of counterexamples at lesser depths. If the system deadlocks,

and has no trajectory of length k, then bounded model checking at depth k won’t be able

to find counterexamples for either formulation φ or ψ, but counterexamples may exist at

lesser depths.

SAL-BMC and SAL-INF-BMC can be instructed to use iterative deepening ( -it flag).

Iterative deepening uses the φ formula to search for a counterexample of minimal length

for 2P . A sequence of SAT problems is fired and the satisfiability of φ is determined for

k = 0, k = 1 and so forth until a counterexample is found or a maximal depth is reached.

The default mode for both SAL-BMC and SAL-INF-BMC uses the formula ψ, and searches

for its satisfiability for a user-specified depth k.

4.3.3 Invariance Properties

An invariant states that P “always” holds and is in the form 2P . We have shown that

invariants can be proved false by implicitly proving that the safety property P does not

hold along a path x0, x1, . . . xk.

However, formulations like φ and ψ can be improved. It is sufficient to check that an

invariant does not hold in at least one state xi. Therefore, SAT solvers used with SAL-

BMC, SAL-INF-BMC and NuSMV explicitly falsify invariants by checking the following

formula, as stated in [48]:

γ = I(x0) ∧ T (x0, x1) ∧ . . . ∧ T (xk−1, xk) ∧ (¬P (x0) ∨ . . . ∨ ¬P (xk))

The formula γ is satisfiable iff there exists a path of length at most k from the initial

state x0, which violates the invariant 2P . If bounded model checking cannot find a

counterexample for an invariant 2P , we cannot conclude in general that 2P is satisfied.

Therefore, a powerful technique called induction or k-induction is used to fully prove in-

variants [23].
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4.3.4 K-induction

The standard induction rule for proving an invariant 2P consists of proving that the

following two formulas are valid [28]:

• Base Case: I(x)⇒ P (x)

• Induction step: P (x) ∧ T (x, x
′

)⇒ P (x
′

)

This can be transformed into two satisfiability problems that can be solved using a SAT

solver. SAL-BMC and SAL-INF-BMC can be instructed to prove an invariant 2P using

k-induction, by using the -i flag. SAL will delegate the problem to its default SAT solver

ICS or to an external SAT solver, who will either prove the LTL specification using standard

induction, or will find a counterexample using the following k-induction rule [28]:

• Base Case : I(x0) ∧ T (x0, x1) ∧ . . . ∧ T (xk−2, xk−1)⇒ P (x0) ∧ . . . ∧ P (xk−1)

• Induction Step: P (x0)∧T (x0, x1)∧. . .∧T (xk−2, xk−1)∧P (xk−1)∧T (xk−1, xk)⇒ P (xk)



Chapter 5

Pathway Logic

5.1 Introduction

Research in biology and biomedicine has been revolutionized in recent years by the enor-

mous growth of genomic sequence information and technological advances in the analysis

of global gene expression [35]. There is a need for integrating that vast amount of ex-

perimental data and associated analyses into theoretical models of cellular processes for

guiding hypothesis creation and testing.

Formal methods techniques have been used by various groups to develop executable

models of biological systems at high levels of abstraction [50]. Typically, the techniques

are based on a model of concurrent computation with associated formal languages for de-

scribing system behaviour and tools for simulation and analysis.

The Petri net formalism [45] has been developed to specify and analyse concurrent

systems. Petri nets have a graphical representation that corresponds naturally to conven-

tional representations of biochemical networks. They have been used to model metabolic

pathways, simple genetic networks, and to map biochemical concepts such as stoichiome-

try, flux modes, and conservation relations to well-known Petri net theory concepts [50].

Other formal methods used to model biological systems are pi-calculus, a process alge-

bra originally developed for describing concurrent computer processes, and statecharts, a

visual notation for specifying reactive concurrent systems.

In this research paper, our experiments are largely based on Pathway Logic. Pathway

Logic (PL) is an approach to modelling biological processes as Petri nets, based on formal

methods and rewriting logic [5]. Representing biological knowledge using formal rules and

18
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concepts allows data to be interpreted, combined, and queried in the context of biological

knowledge.

State-of-the-art: Pathway Logic is currently being used for the modelling and analysis

of signal transduction and metabolic networks in mammalian cells. PL models are repre-

sented using the Maude system [12], a system founded on rewriting logic.

Rewriting Logic [41] is a simple but powerful logical formalism based on two simple ideas:

• the states of a system are represented as elements of an algebraic data type

• the behaviour of a system is given by local transitions between states described by

abstractions called rewrite rules

In Pathway Logic the algebraic data types are used to represent concepts from cell

biology needed to model signalling processes, including intracellular proteins and

biochemical modification of proteins [50]. Rewrite rules are used to model local processes

within a cell or transmission of a signal across a cell membrane. The biological signalling

network is represented as a collection of rewrite rules together with the algebraic declara-

tions.

Using Pathway Logic, biological models can be described at very different levels of ab-

straction, dynamic pathways can be generated using search and model-checking techniques,

and the rewriting logic representation of models meeting certain simple conditions can be

transformed into Petri nets for analysis and visualization [51].

5.2 Pathway Logic Basics

As mentioned above, Pathway Logic models of biological processes are developed using the

Maude system [12], a formal language and tool set based on rewriting logic.

PL models are structured in four layers, as mentioned in [51]:

(1) Sorts and operations. This layer defines the main sorts, subsort relations, and

operations for representing cell states. The sorts of entities include Chemical, Pro-

tein, DNA, Complex, and Enclosure (cells and other compartments). These are all

subsorts of the sort Soup, which is a multiset that represent liquid mixtures. Worth

mentioning is the sort Dish, which encapsulates a Soup as a state to be observed.

Post-translational protein modification is represented by terms of the form [P - mods],
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where P is a protein and mods is a set of modifications. For example, the term [Cas

- act] represents the activation of the protein Cas.

(2) Components. This layer specifies particular entities like proteins, chemicals, DNA,

and introduces additional sorts for grouping proteins in families.

(3) Rules. This layer contains rewrite rules specifying individual steps such as metabolic

reactions, activation or translocation.

(4) Queries. This layer specifies initial states and properties of interest.

5.3 The Pathway Logic Assistant

The Pathway Logic Assistant (PLA) [51] is a visualization and analysis tool that provides

a user interface that supports visualization of and interaction with the biological models.

The Interoperability Platform (IOP) [40] is the underlying infrastructure for the PLA.

The IOP project is aimed at developing an infrastructure for allowing formal tools like

Maude and PVS to interact via simple, well defined, semantically meaningful communi-

cation interfaces. Currently, IOP facilitates the communication of IMaude, an interactive

extension of Maude, with other tools, including other instances of itself, web resources,

visualization tools, theorem provers such as PVS [15], as well as to read and write files,

and execute shell commands.

Once a set of rules is represented in Maude, the biologists can use the Pathway Logic

Assistant to explore the model structure and to ask questions, such as: “starting with a

cell containing particular proteins and chemicals can a state be reached matching a par-

ticular pattern?”. These kind of questions can be answered using execution, search, and

model-checking in Maude, or by converting the model to a Petri net and using Petri net

analysis tools. The Petri net is represented using an interactive network graph, in which

the biological network, subnets, and generated pathways can be visualized. The interactive

network graph has actions associated either with the graph as a whole or with particular

nodes. For example, a particular signalling subnet can be found, for the activation of

protein Fak. This can be acomplished by first choosing from the Selections menu, Fak-act

as a goal. Goals, such as Fak-act, are coloured in green. Then the graph is asked to find

a path leading to the goal state. A rule node can be selected, and has an action that will
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display the Maude code for the rule.

Figure 5.1: Pathway for the activation of protein Fak

Figure 5.2: The result of invoking Show Maude Rule



Chapter 6

Modelling and Querying Cellular

Signalling Networks

6.1 Introduction

There is a vast amount of experimental data in biology and biomedicine that needs to be

analysed and interpreted. Thus, there is an urgent need to construct predictive models

and to conduct in silico experiments using formal methods in general and rewriting logic

based formalisms in particular [36].

A significant amount of work has been done investigating mammalian signalling pro-

cesses and the molecular pathways by which cells detect, convert, and internally transmit

information from their environment to intracellular targets such as the genome [35, 50, 36].

Our work is based on the computational models of mammalian signalling processes created

by Maude [12] using rewriting logic principles, and exported as Petri nets representations.

The content of our work is described in the following way: this chapter describes the

naming conventions used throughout the rest of this paper, gives an overview of signal

transduction in mammalian cellular networks, explains the particular biological networks,

and the types of queries used in our experiments. The next chapter contains the actual

experiments, and provides an overview of the biological concepts used, such as Soup and

Dish. Finally, the last chapter draws the appropriate conclusions, formulates rules of thumb

and indicates future research directions.

22
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6.2 Naming conventions

In this paper we will use the name conventions initiated and used by Merrill Knapp (SRI),

the principal curator of PL models. The following naming conventions are used:

• CLi and CLm refer to the location of an element (protein , gene, chemical), which

might be inside the cell or in its membrane.

• NUc refers to an element located in the cytosol of the nucleus.

• act indicates that a protein is activated.

• on is typically used as a gene modification to indicate that it is enabled for tran-

scription (i.e. to produce the protein it encodes).

6.3 Signal transduction

Signal transduction represents any process by which a cell converts one kind of signal or

stimulus into another. It usually involves a sequence of biochemical reactions inside the

cell, which are carried out by enzymes and linked through second messengers (i.e. low

weight diffusible molecules) [25].

In our work, we have used two models of signal transduction in mammalian cellular net-

works: the epidermal growth factor receptor (EGFR) signalling network, and the molecular

interaction network of a macrophage.

6.3.1 EGFR network

The epidermal growth factor receptor (EGFR) signalling pathway is one of the most

important pathways that regulate growth, survival, proliferation, and differentiation in

mammalian cells. It is one of the best investigated signalling systems, both experimentally

and computationally, and several computational models have been developed for dynamic

analysis [43].

We are interested in finding signalling pathways that lead to the activation of various

proteins, genes, biochemicals etc.
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Activation of protein Rac1

Rac1 is a protein that becomes active when it has a GTP (guanosine triphosphate) bound

to it. Rac1 becomes inactive when the GTP has been exchanged for GDP. This cycle acts

as a molecular switch in signalling pathways by regulating functions of other proteins [44].

More specifically, by means of model checking, we are interested in finding pathways

along which Rac1 is activated inside the cell. According to our naming conventions, we

will consider all the pathways in which Rac1-GTP-CLi appears. An interesting aspect is

the relation between the activation of Rac1 and other proteins, such as Vav2 and EgfR

(i.e. the epidermal growth factor receptor). We intend to discover:

• Pathways leading to the activation of Rac1 which might use the protein Vav2 acti-

vated inside the cell (i.e. Vav2-act-CLi).

• Pathways in which the activation of EgfR in the cell membrane (i.e. EgfR-act-CLm)

is not a necessary checkpoint for activating the protein Rac1.

• Pathways in which Rac1 can be activated without ever producing EgfR.

Production of chemicals PIP3 and IP3

We would also like to find out how the chemicals PIP3 (phosphatidylinositol) and IP3

(inositol) influence the activation of each other in the cell membrane. Hence, we intend to:

• Discover signalling pathways that lead to the production of PIP3 in the cell membrane

(i.e. PIP3-CLm).

• Discover pathways in which PIP3-CLm is produced and later IP3-CLm is produced.

• Discover pathways that lead to the creation of IP3, in which PIP3 is not a necessary

checkpoint.

• Find pathways in which IP3 is produced without ever producing PIP3.

6.3.2 The molecular interaction network of a macrophage

The biological interaction network used in our experiments is in fact a transliteration

done by Merrill Knapp of one of Hiroaki Kitano’s original cell designer examples [42].
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The initial map of a macrophage is a comprehensive map of molecular interactions in a

macrophage, developed with the purpose of indentifying intracellular molecular interactions

and understanding complex dynamics and mechanisms of the cell. Macrophages are cells

found in tissues that are responsible for phagocytosis (i.e. cell eating) of pathogens (i.e.

infectious agents), dead cells and cellular debris. They are part of the innate immune

system [24].

Our main interest is to find pathways that lead to the activation of the gene that codes

for the protein Fos (proto-oncogene protein c-fos), named Fosgene. In particular, we are

interested how the activation of the protein family Erk(Mitogen-activated protein kinase)

inside the cell (i.e. Erk-act-CLi) influences the production of Fosgene in the cytosol of the

nucleus (i.e. Fosgene-on-NUc). Thus we intend to find:

• Pathways leading to Fosgene-on-NUc which might use the activated protein Erk.

• Pathways in which the production of protein Erk is not a necessary checkpoint for

turning Fosgene on (producing Fosgene-on-NUc).

• Pathways in which Fosgene can be activated without ever activating Erk.

Similar to the EGFR network study, we would also like to discover signalling pathways

that lead to the activation of the chemical PIP3 in the cell membrane (i.e. PIP3-CLm).

6.4 Biological queries

The use of formal reasoning tools such as Maude, SAL and NuSMV to represent

complex molecular networks is motivated by the promise of achieving biologically qualita-

tive analyses of the dynamical behaviour of these networks. This is very important in the

development of computational biology, for the following reasons, identified by Fages et al.

in [29]:

• Qualitative analyses promise to provide logical and computational interpretation of

the role of biologically relevant subparts of regulatory, signalling and metabolic net-

works. These networks are very complex mechanisms which are far from being un-

derstood on a global scale.
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• Data on both the existence and dynamics of molecular interactions is rare and un-

reliable. Hence, dynamical models are too sensitive to the exact network structure

and are not suited to analyze and predict the behaviour of molecular interactions.

In our experiments, we explore the use of automated methods for querying qualitative

models of biomolecular networks, using the Temporal Logic framework. Our queries will

be mainly Linear Temporal Logic queries, but we will make use of some Computation Tree

Logic queries as well. The biological queries that biologists can consider about models

of signal transduction in mammalian cellular networks are of different kinds. Below we

enumerate a list of types of biological queries used in our work, and discuss their expression

in LTL and CTL:

About simple reachability:

(1) Given an initial state init, is there a pathway for producing a species P? This query

translates into the LTL formula F(P) and CTL formula EF(P). However, since we

will be using bounded model checking, we will look for counterexamples of their

duals: G(¬(P)) and respectively AG(¬(P)).

About pathways:

(2) Given an initial state init, can the cell reach a state P while passing by another state

Q? A path that is a counterexample for the LTL formula F(P) ⇒ ¬(Q) U P has the

desired property. However, this is not a causal relation, since Q may not be actually

causally used to produce P, it may just be coincidental. On the other hand, if the

above formula is proved, and P is producable, then every path that produces P has

the property that Q is not present before P (i.e. Q prevents the production of P).

(3) Given an initial state init, is it possible to produce a state P without using a state

Q? A path that is a counterexample for the LTL formula F(P) ⇒ ¬(¬(Q) U P) has

the desired property. This is a causal relation, which means that if the formula is

proved and P is producable, then the state Q is a necessary checkpoint for reaching

state P. Biologists call Q in this case a “knockout” for P, because if Q is prevented

then P is also prevented.

(4) Given an initial state init, is it possible to produce P without ever producing Q?

A path that is a counterexample to the LTL formula F(P) ⇒ ¬(G(¬(Q))) has the

desired property.
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Computational results

7.1 Introduction

In our experiments, we compared the performances of various formal reasoning tools such as

SAL, NuSMV, Maude and Lola, in modelling and querying the biological cellular signalling

networks described in the previous chapter. We also aimed to find well argued rules

of thumb that should be used as a guide when deciding which of the SAL or NuSMV

tools would be best to use to answer a given query if integrated into the Pathway Logic

Assistant.

Before presenting the experimental results, we find it necessary to describe in more

detail the notions of Soup and Dish, defined in Maude.

7.2 The concepts of Soup and Dish

In eukaryotic cells (cells with a nucleus) proteins and other molecules exist in complex

mixtures that are compartmentalized [35]. Such a compartmentalized mixture is called a

Soup. In Maude, a soup is defined as a multiset of things. The multiset union operation

models the presumed fluid or dynamic nature of some subcellular compartments, where

the order in which molecules exist in the soups does not matter [36]. For example the

term {CM| cm:Soup PIP3 [Pdk1 - act] {cyto:Soup PKCe}} represents a cell containing

the chemical PIP3 and the activated protein [Pdk1 - act] in the cell membrane and the

protein PKCe in the cytoplasm.

A particular sort of top-level soup called Dish serves as a container for carrying out

27
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in silico experiments. The dishes used in these experiments are translated into boolean

models, which range in size and complexity from small to medium and finally large dishes.

The models were developed at the SRI. We will use two dishes for analyzing the EGFR

network and one dish for analyzing the macrophage network.

The first dish, used in the EGFR network, is called “ThreeWaysToActRac”. It is

a small sized dish. Its corresponding boolean model has 39 transitions and 69 species.

“ThreeWaysToActRac” was intended to show that the protein Rac1 could be activated by

an EGF stimulus by three different routes.

The second dish, also used in the EGFR network, is called “EgfDemo”. It is a medium

sized dish. Its corresponding boolean model has 63 transitions and 103 species. We have

used this dish for finding signalling pathways that lead to the production of the chemicals

PIP3 and IP3, as explained in the previous chapter.

The third dish, used in the molecular interaction network of a macrophage, is called for

historical reasons “Kitano Macrophage”. It is a large sized dish. Its corresponding boolean

model has 342 transitions and 543 species. We have used this dish for finding signalling

pathways that lead to the production of the chemical PIP3 and the activation of the DNA

Fosgene, using the activated protein family Erk.

7.3 Experiments

Below are the experiments on which we have based our conclusions. All the experiments

were done on a machine running Fedora Core 3, with an Athlon 1.9 Gh processor and 512

MB core memory.

We have used two Perl scripts named salParser4.pl and smvParser.pl. Both scripts take

as input a file containing a Petri net representation of the biological network, generated by

Maude.

The scripts produce SAL and respectively NuSMV specifications that model the in-

teraction rules within the given Petri net, and allow biologists to address queries, using

LTL and CTL formulas. This is done by translating a specification produced from curated

Maude models. One feature of salParser4.pl is that it generates a deadlock transition, one

that is only enabled if no other transition is enabled, and that does not change the state.

This is necessary in order to preserve the Maude semantics, which treats finite computa-

tions as infinite computations that end with an infinity of identity transitions. NuSMV
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has a built-in mechanism for detecting deadlocks.

We have used different SAT solvers in conjunction with the bounded model checker

within SAL (sal-bmc). Thus, we were able to speed up the computation process of sal-bmc

by using SAT solvers like Siege, BerkMin and zChaff. A minor drawback is that currently

only zChaff is available on both Macintosh and Linux platforms.

Type Query SAL-SMC SAL-BMC NuSMV Lola Maude

Time Path Time Path Time Path Time Path Time Path

secs length secs length secs length secs length secs length

1 G(¬ (Rac1-GTP-CLi)) 11.94 6 2.52 8 <1 5 <1 5 <1 5

2 F(Rac1-GTP-CLi)⇒ 5.38 7 1.79 7 1.1 6 – – <1 5

¬(Vav2-act-CLi) U

Rac1-GTP-CLi

3 F(Rac1-GTP-CLi)⇒ 5.8 9 1.22 9 1.12 6 – – <1 10

¬(¬(EgfR-act-CLm)

U Rac1-GTP-CLi)

4 F(Rac1-GTP-CLi)⇒ 5.85 – 7.88 – <1 8 – – <1 8

¬G(¬(EgfR-act-CLm))

Table 7.1: Evaluation of LTL queries in the small dish “ThreeWaysToActRac”

Type Query SAL-SMC SAL-BMC NuSMV Lola Maude

Time Path Time Path Time Path Time Path Time Path

secs length secs length secs length secs length secs length

1 G(¬(PIP3-CLm)) 16.4 4 1.5 5 <1 4 1.5 4 <1 46

1 AG(¬(PIP3-CLm)) 16.4 4 1.49 5 – – – – – –

2 F(IP3-CLm)⇒ 17.75 8 1.84 10 1.5 7 – – <1 46

¬(PIP3-CLm)

U IP3-CLm

3 F(IP3-CLm)⇒ 17.52 5 1.78 10 1.2 4 – – <1 37

¬(¬(PIP3-CLm)

U IP3-CLm)

4 F(IP3-CLm)⇒ 74.44 39 239.88 39 1.3 4 – – <1 37

¬(G(¬(PIP3-CLm)))

Table 7.2: Evaluation of LTL and CTL queries in the medium dish “EgfDemo”
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Type Query SAL-SMC SAL-BMC NuSMV Maude

Time Path Time Path Time Path Time Path

secs length secs length secs length secs length

1 G(¬(PIP3-CLm)) – – 48.93 10 2.5 3 <1 >100

1 G(¬(Fosgene-on-NUc)) – – 50.86 10 3.5 3 <1 >100

1 AG(¬(Fosgene-on-NUc)) – – 55.22 6 – – – –

2 F(Fosgene-on-NUc)⇒ – – 194.66 24 9.4 7 2.8 >100

¬(Erk-act-CLi) U Fosgene-on-NUc

3 F(Fosgene-on-NUc)⇒ – – 52.12 9 4.3 3 2.2 >100

¬(¬(Erk-act-CLi) U Fosgene-on-NUc)

4 F(Fosgene-on-NUc)⇒ – – 66.73 10 5.4 3 – –

¬(G(¬(Erk-act-CLi)))

Table 7.3: Evaluation of LTL and CTL queries in the large dish “Kitano Macrophage”

The above experiments represent the execution times and lengths of the counterexamples

generated by formal reasoning tools such as SAL, NuSMV, Maude and Lola [1], as a result

of applying model checking on different kinds of dishes. These timings are sometimes slower

than what is usually expected in the program verification community. The main reason for

this is the overall structure of transition relations modelling biomolecular networks. Such

transition systems are highly non-deterministic due to the “soup” aspect of molecular

interactions.

The timings obtained with the NuSMV model checker show the efficiency of this tool,

when compared with the others. One reason for this might be related to the fact that

NuSMV seems to find the shortest signalling pathway or counterexample, without entering

any unnecessary loops.

The results obtained with the SAL model checker show that sal-bmc takes full advantage

of external SAT solvers like Siege, BerkMin or zChaff, having execution times comparable

with NuSMV. However, the execution paths generated by SAL are usually longer than

NuSMV’s. Sometimes (see the last row from Table 7.2) SAL enters unnecessary deadlock

loops.

Lola proves to be a reliable tool when it is dealing with simple reachability queries

(i.e. type 1). However, the results of the queries with types 2, 3 and 4 were obtained by

inspecting the execution paths, using the Pathway Logic Assistant. Thus, these results are

rather uninformative and are not included in the tables.
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The timings obtained with the Maude model checker show that this tool is the fastest

one when it terminates, but does not always have the best answer. Maude adopts a depth-

first algorithm when generating counterexamples and not a breadth-first algorithm like

NuSMV and SAL. Therefore, Maude usually generates huge counterexamples with tens of

redundant transitions.



Chapter 8

Conclusions and Suggestions for

Further Work

We have presented in this thesis how formal reasoning tools can be used to model complex

non-deterministic mammalian biomolecular signalling networks. Using Perl scripts, we

were able to generate SAL and NuSMV specifications that model the cellular networks.

We did this by translating a Petri net specification produced from curated Maude models.

Four different representations of Petri nets were tried when creating SAL specifications.

The first one identifies each SAL module with a transition rule and composes all the

modules asynchronously. The second one uses a single SAL module in which the transition

rules are simply enumerated using SAL’s choice operator []. The third one also uses a

single SAL module, but stores the components of the system in an array of booleans. The

fourth and final version used throughout our experiments, generates a deadlock transition,

one that is only enabled if no other transition is enabled. The reasons for using the fourth

version were explained in the previous chapter.

We have used the Temporal Logic framework to query these systems. Interesting results

were obtained, which should be used as a guide when assessing the suitability of SAL and

NuSMV for the integration in the next release of the Pathway Logic Assistant.

We found it appropriate to state a few rules of thumb that characterize the main features

of each formal reasoning tool used in our work.

32



33

General rules of thumb:

(1) For simple reachability queries of type G(¬(P)), applied on small, medium or large

dishes, it is advisable to try Lola first, then Maude.

(2) For queries of type F(P) ⇒ ¬(Q) U P, applied on small, medium or large dishes, it

is advisable to use NuSMV first and then try SAL.

(3) For queries of type F(P) ⇒ ¬(¬(Q) U P), which we call necessity queries, applied

on all kinds of dishes, it is advisable to use NuSMV first and then try SAL.

(4) For queries of type F(P) ⇒ ¬(G(¬(Q))), it is advisable to first use NuSMV for all

kinds of dishes. For small dishes, one can also use Maude. For medium dishes, after

trying NuSMV, one can try Maude. Finally, for large dishes, the second choice should

be SAL.

We also implemented and integrated two classes of SAL actors in the Interoperability

Platform (IOP). The intended outcome is to make communication possible between SAL

and other formal reasoning tools, such as Maude and PVS, which are already part of

IOP. We explain the difficulties and reasons for implementing two classes of actors, by

identifying two different categories of SAL tools: the first category contains programs that

terminate after executing a request, and the second category contains systems programmed

as a “read-eval-print” loop.

There are many more improvements to be made in the implementation of the SAL

and NuSMV parsers. We found that using the current specifications, SAL and NuSMV

have weak performances, when dealing with CTL queries. SAL is able to answer only to

simple reachability queries expressed in CTL, while NuSMV doesn’t respond to any type

of CTL query. The main improvement would be to find more efficient SAL and NuSMV

specifications, which are able to handle CTL queries. In order to test these changes on

different dishes, the Perl parsers should be updated appropriately.

Another future work item would be to prove the correctness of the mapping from Petri

nets to SAL and NuSMV specifications.
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Appendix A

SAL , NuSMV, Maude and Lola

experiments

The following experiments show the execution times and counterexamples generated by

SAL, NuSMV, Maude and Lola. The types of dishes and queries used are contained in the

caption of each table.

Tool SAT Time Counterexample generated:

solver secs

SAL-SMC 11.94 1.EgfR.on 478.Vav2.on 40.Cdc42.by.Vav2 67.Pi3k.by.Cdc42

643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

SAL-BMC Siege 0.87 1.EgfR.on 4.Cbl.by.EgfR 870.Crk.by.Cbl 761.Grb2.to.EGFR 853.Pi3k.by.Cbl

643.PIP3.from.PIP2.by.Pi3k 478.Vav2.on 171.C3g.on 890.Rac1.on-1

BerkMin 0.81 526.Ia5Ib1.on 1.EgfR.on 4.Cbl.by.EgfR 761.Grb2.to.EGFR 478.Vav2.on 11.Sos1.on

800.Sos1.Off 853.Pi3k.by.Cbl 643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

zChaff 1.22 526.Ia5Ib1.on 99.Fak.on 1.EgfR.on 478.Vav2.on 761.Grb2.to.EGFR 40.Cdc42.by.Vav2

67.Pi3k.by.Cdc42 4.Cbl.by.EgfR 643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

ICS 2.52 1.EgfR.on 526.Ia5Ib1.on 761.Grb2.to.EGFR 4.Cbl.by.EgfR 853.Pi3k.by.Cbl

643.PIP3.from.PIP2.by.Pi3k 478.Vav2.on 890.Rac1.on-1

NuSMV SIM <1 1.EgfR.on 478.Vav2.on 40.Cdc42.by.Vav2

67.Pi3k.by.Cdc42643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

Maude <1 1.EgfR.on 67.Pi3k.by.Cdc42 478.Vav2.on 643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

Lola <1 1.EgfR.on 67.Pi3k.by.Cdc42 478.Vav2.on 643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

Table A.1: “ThreeWaysToActRac” dish – G(¬ (Rac1-GTP-CLi))
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC 5.38 1.EgfR.on 478.Vav2.on 4.Cbl.by.EgfR 853.Pi3k.by.Cbl 643.PIP3.from.PIP2.by.Pi3k

890.Rac1.on-1 870.Crk.by.Cbl

SAL-BMC Siege 0.92 1.EgfR.on 478.Vav2.on 4.Cbl.by.EgfR 526.Ia5Ib1.on 761.Grb2.to.EGFR

853.Pi3k.by.Cbl 643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1 353.Gab1.on

BerkMin 1.03 1.EgfR.on 478.Vav2.on 40.Cdc42.by.Vav2 67.Pi3k.by.Cdc42 761.Grb2.to.EGFR

643.PIP3.from.PIP2.by.Pi3k 108.Pdk1.by.PIP3 353.Gab1.on 890.Rac1.on-1

565.Pak.on

zChaff 1.27 1.EgfR.on 4.Cbl.by.EgfR 761.Grb2.to.EGFR 870.Crk.by.Cbl 478.Vav2.on

40.Cdc42.by.Vav2 853.Pi3k.by.Cbl 643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

11.Sos1.on

ICS 1.79 1.EgfR.on 478.Vav2.on 40.Cdc42.by.Vav2 67.Pi3k.by.Cdc42

643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1 566.Pak.on

NuSMV SIM 1.1 1.EgfR.on 478.Vav2.on 40.Cdc42.by.Vav2 67.Pi3k.by.Cdc42

643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

Maude <1 1.EgfR.on 67.Pi3k.by.Cdc42 478.Vav2.on 643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

Lola <1 1.EgfR.on 67.Pi3k.by.Cdc42 478.Vav2.on 643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

Table A.2: “ThreeWaysToActRac” dish – F(Rac1-GTP-CLi)⇒ ¬(Vav2-act-CLi) U Rac1-GTP-CLi
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC 5.8 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 365.Crk.by.Pax 440.Cas.on 563.Dock.by.Crk

38.Elmo.by.Dock 256.Rac1.on-3 343.Sos1.on

SAL-BMC Siege 0.97 526.Ia5Ib1.on 99.Fak.on 533.Pi3k.by.Fak 434.Pax.phos 365.Crk.by.Pax 440.Cas.on

563.Dock.by.Crk 38.Elmo.by.Dock 256.Rac1.on-3 343.Sos1.on

BerkMin 1.01 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 365.Crk.by.Pax 563.Dock.by.Crk

38.Elmo.by.Dock 533.Pi3k.by.Fak 440.Cas.on 256.Rac1.on-3 566.Pak.on

zChaff 1.22 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 365.Crk.by.Pax 563.Dock.by.Crk 440.Cas.on

38.Elmo.by.Dock 256.Rac1.on-3 1.EgfR.on

ICS 2.11 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 440.Cas.on 365.Crk.by.Pax 563.Dock.by.Crk

38.Elmo.by.Dock 256.Rac1.on-3 343.Sos1.on

NuSMV SIM 1.12 1.EgfR.on 478.Vav2.on 40.Cdc42.by.Vav2 67.Pi3k.by.Cdc42

643.PIP3.from.PIP2.by.Pi3k 890.Rac1.on-1

Maude <1 1.EgfR.on 526.Ia5Ib1.on 99.Fak.on 4.Cbl.by.EgfR 434.Pax.phos 870.Crk.by.Cbl

440.Cas.on 563.Dock.by.Crk 38.Elmo.by.Dock 256.Rac1.on-3

Lola <1 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 440.Cas.on 365.Crk.by.Pax 563.Dock.by.Crk

38.Elmo.by.Dock 256.Rac1.on-3

Table A.3: “ThreeWaysToActRac” dish – F(Rac1-GTP-CLi)⇒¬(¬(EgfR-act-CLm) U Rac1-GTP-CLi)

Tool SAT Time Counterexample generated:

solver secs

SAL-SMC 5.85 proved

SAL-BMC Siege 7.88 no counterexample between depths: [0, 60]

BerkMin 15.34 no counterexample between depths: [0, 70]

zChaff 23.81 no counterexample between depths: [0, 80]

ICS 78.67 no counterexample between depths: [0, 60]

NuSMV SIM <1 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 365.Crk.by.Pax 563.Dock.by.Crk

440.Cas.on 38.Elmo.by.Dock 256.Rac1.on-3

Maude <1 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 440.Cas.on 365.Crk.by.Pax

563.Dock.by.Crk 38.Elmo.by.Dock 256.Rac1.on-3

Lola <1 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 440.Cas.on 512.Crk.by.Cas

563.Dock.by.Crk 38.Elmo.by.Dock 256.Rac1.on-3

Table A.4: “ThreeWaysToActRac” dish – F(Rac1-GTP-CLi)⇒ ¬(G(¬(EgfR-act-CLm)))
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC 16.4 526.Ia5Ib1.on 99.Fak.on 533.PI3K.by.Fak 643.PI345P3.from.PI45P2.by.PI3K

SAL-BMC Siege 1.67 1.EgfR.on 16.Shc.by.EgfR 172.Shp1.by.EgfR 761.Grb2.by.EgfR 353.Gab1.on

429.PI3K.by.Gab1 11.Sos1.by.Grb2 643.PI345P3.from.PI45P2.by.PI3K

BerkMin 1.5 526.Ia5Ib1.on 99.Fak.on 713.Ilk.by.Integrin 533.PI3K.by.Fak

643.PI345P3.from.PI45P2.by.PI3K

zChaff 2.28 584.Eif4e.xby.4Ebp1 1.EgfR.on 526.Ia5Ib1.on 99.Fak.on 761.Grb2.by.EgfR

4.Cbl.by.EgfR 12.Plcg1.by.Fak 533.PI3K.by.Fak 54.Ca++.by.Integrin

643.PI345P3.from.PI45P2.by.PI3K

ICS 29.55 1.EgfR.on 761.Grb2.by.EgfR 353.Gab1.on 429.PI3K.by.Gab1

643.PI345P3.from.PI45P2.by.PI3K

NuSMV SIM <1 526.Ia5Ib1.on 99.Fak.on 533.PI3K.by.Fak 643.PI345P3.from.PI45P2.by.PI3K

Maude <1 ’1.EgfR.on ’526.Ia5Ib1.on ’54.Ca++.by.Integrin ’4.Cbl.by.EgfR ’870.Crk.by.Cbl

’563.Dock.by.Crk ’38.Elmo.by.Dock ’99.Fak.on ’761.Grb2.by.EgfR ’353.Gab1.on

’713.Ilk.by.Integrin ’434.Pax.phos ’440.Cas.on ’853.PI3K.by.Cbl

’322B.Eif4g.by.PI3K ’643.PI345P3.from.PI45P2.by.PI3K ’108.Pdk1.by.PIP3

’109.Akt.on ’122.Gsk3.xby.Akt ’107.PI45P2.from.PI345P3.by.Pten

’567.PKA.xby.Integrin ’643.PI345P3.from.PI45P2.by.PI3K ’111.aPkc.on

’107.PI45P2.from.PI345P3.by.Pten ’12.Plcg1.by.Fak ’84.IP3.by.Plc ’314.cPkc.on

’758.nPkc.on-1 ’16.Shc.by.EgfR ’172.Shp1.by.EgfR ’167.Shp2.by.Gab1 ’343.Sos1.on

’121.Akt.to.nuc ’561.Cav1.by.Integrin ’256.Rac1.on-3 ’473.Mekk1.by.Rac1

’148.Mek.by.Mekk1 ’472.Mekk4.by.Rac1 ’372.Mkk4.by.Mekk1 ’566.Pak.on

’711.Mkk3/6.by.Pak ’61.P38.by.Mkk3 ’448.P38.to.nuc ’64.Elk1.by.P38

’263.Msk.by.P38 ’442.Creb.by.Msk deadlock

Lola 1.5 1.EgfR.on 4.Cbl.by.EgfR 853.Pi3k.by.Cbl 643.PIP3.from.PIP2.by.Pi3k

Table A.5: “EgfDemo” dish – G(¬(PIP3-CLm))
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC 16.4 526.Ia5Ib1.on 99.Fak.on 533.PI3K.by.Fak 643.PI345P3.from.PI45P2.by.PI3K

SAL-BMC Siege 1.66 584.Eif4e.xby.4Ebp1 612.Eps8.by.Actin 498.E3b1.by.Eps8 1.EgfR.on

761.Grb2.by.EgfR 353.Gab1.on 429.PI3K.by.Gab1

643.PI345P3.from.PI45P2.by.PI3K

BerkMin 1.49 526.Ia5Ib1.on 99.Fak.on 713.Ilk.by.Integrin 533.PI3K.by.Fak

643.PI345P3.from.PI45P2.by.PI3K

zChaff 2.24 584.Eif4e.xby.4Ebp1 1.EgfR.on 526.Ia5Ib1.on 99.Fak.on 761.Grb2.by.EgfR

4.Cbl.by.EgfR 12.Plcg1.by.Fak 533.PI3K.by.Fak 54.Ca++.by.Integrin

643.PI345P3.from.PI45P2.by.PI3K

ICS 29.55 1.EgfR.on 761.Grb2.by.EgfR 353.Gab1.on 429.PI3K.by.Gab1

643.PI345P3.from.PI45P2.by.PI3K

NuSMV SIM – failed to timely terminate

Maude – –

Lola – –

Table A.6: “EgfDemo” dish – AG(¬(PIP3-CLm))
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC 17.75 526.Ia5Ib1.on 99.Fak.on 533.PI3K.by.Fak 643.PI345P3.from.PI45P2.by.PI3K

107.PI45P2.from.PI345P3.by.Pten 12.Plcg1.by.Fak 84.IP3.by.Plc

322B.Eif4g.by.PI3K

SAL-BMC Siege 1.84 526.Ia5Ib1.on 54.Ca++.by.Integrin 99.Fak.on 1.EgfR.on 533.PI3K.by.Fak

643.PI345P3.from.PI45P2.by.PI3K 12.Plcg1.by.Fak

107.PI45P2.from.PI345P3.by.Pten 84.IP3.by.Plc 567.PKA.xby.Integrin

BerkMin 1.83 584.Eif4e.xby.4Ebp1 612.Eps8.by.Actin 526.Ia5Ib1.on 99.Fak.on

12.Plcg1.by.Fak 533.PI3K.by.Fak 643.PI345P3.from.PI45P2.by.PI3K

107.PI45P2.from.PI345P3.by.Pten 84.IP3.by.Plc 561.Cav1.by.Integrin

zChaff 2.5 526.Ia5Ib1.on 99.Fak.on 584.Eif4e.xby.4Ebp1 12.Plcg1.by.Fak

533.PI3K.by.Fak 612.Eps8.by.Actin 643.PI345P3.from.PI45P2.by.PI3K

107.PI45P2.from.PI345P3.by.Pten 84.IP3.by.Plc 1.EgfR.on

ICS 4.89 526.Ia5Ib1.on 713.Ilk.by.Integrin 99.Fak.on 533.PI3K.by.Fak

643.PI345P3.from.PI45P2.by.PI3K 54.Ca++.by.Integrin 12.Plcg1.by.Fak

107.PI45P2.from.PI345P3.by.Pten 84.IP3.by.Plc 314.cPkc.on

NuSMV SIM 1.5 526.Ia5Ib1.on 99.Fak.on 533.PI3K.by.Fak 12.Plcg1.by.Fak

643.PI345P3.from.PI45P2.by.PI3K 107.PI45P2.from.PI345P3.by.Pten

84.IP3.by.Plc

Maude <1 ’1.EgfR.on ’526.Ia5Ib1.on ’54.Ca++.by.Integrin

’4.Cbl.by.EgfR ’870.Crk.by.Cbl ’563.Dock.by.Crk ’38.Elmo.by.Dock ’99.Fak.on

’761.Grb2.by.EgfR ’353.Gab1.on ’713.Ilk.by.Integrin ’434.Pax.phos

’440.Cas.on ’853.PI3K.by.Cbl ’322B.Eif4g.by.PI3K

’643.PI345P3.from.PI45P2.by.PI3K ’108.Pdk1.by.PIP3 ’109.Akt.on

’122.Gsk3.xby.Akt ’107.PI45P2.from.PI345P3.by.Pten ’567.PKA.xby.Integrin

’643.PI345P3.from.PI45P2.by.PI3K ’111.aPkc.on

’107.PI45P2.from.PI345P3.by.Pten ’12.Plcg1.by.Fak ’84.IP3.by.Plc

’314.cPkc.on ’758.nPkc.on-1 ’16.Shc.by.EgfR ’172.Shp1.by.EgfR

’167.Shp2.by.Gab1 ’343.Sos1.on ’121.Akt.to.nuc ’561.Cav1.by.Integrin

’256.Rac1.on-3 ’473.Mekk1.by.Rac1 ’148.Mek.by.Mekk1 ’472.Mekk4.by.Rac1

’372.Mkk4.by.Mekk1 ’566.Pak.on ’711.Mkk3/6.by.Pak ’61.P38.by.Mkk3

’448.P38.to.nuc ’64.Elk1.by.P38 ’263.Msk.by.P38 ’442.Creb.by.Msk deadlock

Lola – –

Table A.7: “EgfDemo” dish – F(IP3-CLm)⇒ ¬(PIP3-CLm) U IP3-CLm
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC 17.52 526.Ia5Ib1.on 99.Fak.on 12.Plcg1.by.Fak 84.IP3.by.Plc 533.PI3K.by.Fak

SAL-BMC Siege 1.78 1.EgfR.on 172.Shp1.by.EgfR 612.Eps8.by.Actin 16.Shc.by.EgfR

526.Ia5Ib1.on 4.Cbl.by.EgfR 99.Fak.on 12.Plcg1.by.Fak

84.IP3.by.Plc 567.PKA.xby.Integrin

BerkMin 1.84 1.EgfR.on 526.Ia5Ib1.on 16.Shc.by.EgfR 4.Cbl.by.EgfR

853.PI3K.by.Cbl 54.Ca++.by.Integrin 99.Fak.on

12.Plcg1.by.Fak 84.IP3.by.Plc 561.Cav1.by.Integrin

zChaff 2.48 526.Ia5Ib1.on 54.Ca++.by.Integrin 584.Eif4e.xby.4Ebp1 1.EgfR.on

567.PKA.xby.Integrin 612.Eps8.by.Actin 99.Fak.on 12.Plcg1.by.Fak

84.IP3.by.Plc 498.E3b1.by.Eps8

ICS 6.16 1.EgfR.on 761.Grb2.by.EgfR 353.Gab1.on 167.Shp2.by.Gab1 16.Shc.by.EgfR

526.Ia5Ib1.on 99.Fak.on 12.Plcg1.by.Fak 84.IP3.by.Plc 172.Shp1.by.EgfR

NuSMV SIM 1.2 526.Ia5Ib1.on 99.Fak.on 12.Plcg1.by.Fak 84.IP3.by.Plc

Maude <1 ’1.EgfR.on ’526.Ia5Ib1.on ’54.Ca++.by.Integrin

’4.Cbl.by.EgfR ’870.Crk.by.Cbl ’563.Dock.by.Crk ’38.Elmo.by.Dock ’99.Fak.on

’761.Grb2.by.EgfR ’353.Gab1.on ’713.Ilk.by.Integrin ’434.Pax.phos

’440.Cas.on ’853.PI3K.by.Cbl ’322B.Eif4g.by.PI3K ’567.PKA.xby.Integrin

’12.Plcg1.by.Fak ’84.IP3.by.Plc ’314.cPkc.on ’758.nPkc.on-1 ’16.Shc.by.EgfR

’172.Shp1.by.EgfR ’167.Shp2.by.Gab1 ’343.Sos1.on ’561.Cav1.by.Integrin

’256.Rac1.on-3 ’473.Mekk1.by.Rac1 ’148.Mek.by.Mekk1 ’472.Mekk4.by.Rac1

’372.Mkk4.by.Mekk1 ’566.Pak.on ’711.Mkk3/6.by.Pak ’61.P38.by.Mkk3

’448.P38.to.nuc ’64.Elk1.by.P38 ’263.Msk.by.P38 ’442.Creb.by.Msk deadlock

Lola – –

Table A.8: “EgfDemo” dish – F(IP3-CLm)⇒ ¬(¬(PIP3-CLm) U IP3-CLm)
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC 74.44 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 440.Cas.on 12.Plcg1.by.Fak 512.Crk.on

563.Dock.by.Crk 38.Elmo.by.Dock 256.Rac1.on-3 472.Mekk4.by.Rac1 84.IP3.by.Plc

457.Mkk3.by.Mekk4 61.P38.by.Mkk3 448.P38.to.nuc 758.nPkc.on-1

54.Ca++.by.Integrin 263.Msk.by.P38 1.EgfR.on 16.Shc.by.EgfR 343.Sos1.on

442.Creb.by.Msk 241.Grb2.by.Shc 612.Eps8.by.Actin 713.Ilk.by.Integrin

314.cPkc.on 172.Shp1.by.EgfR 353.Gab1.on 498.E3b1.by.Eps8 458.Mkk4.by.Mekk4

4.Cbl.by.EgfR 566.Pak.on 370.Mekk1.by.Pak1 167.Shp2.by.Gab1

62.PI3K.by.Rac1 567.PKA.xby.Integrin 561.Cav1.by.Integrin 584.Eif4e.xby.4Ebp1

322B.Eif4g.by.PI3K 64.Elk1.by.P38 DEADLOCK

SAL-BMC Siege 17.44 no counterexample between depths: [0, 10]

BerkMin 54.23 no counterexample between depths: [0, 30]

zChaff 239.88 526.Ia5Ib1.on 99.Fak.on 434.Pax.phos 440.Cas.on 512.Crk.on

563.Dock.by.Crk 38.Elmo.by.Dock 256.Rac1.on-3 1.EgfR.on 566.Pak.on

711.Mkk3/6.by.Pak 54.Ca++.by.Integrin 61.P38.by.Mkk3 448.P38.to.nuc

473.Mekk1.by.Rac1 263.Msk.by.P38 343.Sos1.on 372.Mkk4.by.Mekk1

761.Grb2.by.EgfR 442.Creb.by.Msk 148.Mek.by.Mekk1 612.Eps8.by.Actin

4.Cbl.by.EgfR 584.Eif4e.xby.4Ebp1 353.Gab1.on 853.PI3K.by.Cbl

472.Mekk4.by.Rac1 12.Plcg1.by.Fak 713.Ilk.by.Integrin

64.Elk1.by.P38 172.Shp1.by.EgfR 84.IP3.by.Plc 314.cPkc.on

561.Cav1.by.Integrin 16.Shc.by.EgfR 498.E3b1.by.Eps8

167.Shp2.by.Gab1 567.PKA.xby.Integrin 322B.Eif4g.by.PI3K

758.nPkc.on-1 DEADLOCK

ICS 90.22 no counterexample between depths: [0, 10]

NuSMV SIM 1.3 526.Ia5Ib1.on 99.Fak.on 12.Plcg1.by.Fak 84.IP3.by.Plc

Maude <1 ’1.EgfR.on ’526.Ia5Ib1.on ’54.Ca++.by.Integrin

’4.Cbl.by.EgfR ’870.Crk.by.Cbl ’563.Dock.by.Crk ’38.Elmo.by.Dock ’99.Fak.on

’761.Grb2.by.EgfR ’353.Gab1.on ’713.Ilk.by.Integrin ’434.Pax.phos

’440.Cas.on ’853.PI3K.by.Cbl ’322B.Eif4g.by.PI3K ’567.PKA.xby.Integrin

’12.Plcg1.by.Fak ’84.IP3.by.Plc ’314.cPkc.on ’758.nPkc.on-1 ’16.Shc.by.EgfR

’172.Shp1.by.EgfR ’167.Shp2.by.Gab1 ’343.Sos1.on ’561.Cav1.by.Integrin

’256.Rac1.on-3 ’473.Mekk1.by.Rac1 ’148.Mek.by.Mekk1 ’472.Mekk4.by.Rac1

’372.Mkk4.by.Mekk1 ’566.Pak.on ’711.Mkk3/6.by.Pak ’61.P38.by.Mkk3

’448.P38.to.nuc ’64.Elk1.by.P38 ’263.Msk.by.P38 ’442.Creb.by.Msk deadlock

Lola – –

Table A.9: “EgfDemo” dish – F(IP3-CLm) ⇒ ¬(G(¬(PIP3-CLm)))
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC – failed to timely terminate

SAL-BMC Siege 48.93 992k.Rgs7.off 199k.TLR3.on 200k.Trif.by.TLR3 206.Traf6.by.Trif

1014k.TLR6.TLR2.on 857k.Csf1R.on 928k.Rasa1.by.Csf1R

974k.IfnaR.on 910k.Pi3k.by.Csf1R 643k.PIP3.from.PIP2.by.Pi3k

BerkMin 49.26 857k.Csf1R.on 858k.Fyn.by.Csf1R 741k.RxR.by.9cisRA

983k.Nos2agene.on 631k.Ifnbgene.on 939k.Shc.by.Csf1R#2 902k.PafR.on

904k.PafR.xby.Grk1 919k.Pi3k.by.Slk 643k.PIP3.from.PIP2.by.Pi3k

zChaff 64.86 897k.P2Ry2.on 980k.LxR.on 926k.PtgeR3.on 96.Pi3k.by.Gbg

967k.IL10R.by.IL10 857k.Csf1R.on 991k.Pparg.on 741k.RxR.by.9cisRA

900k.IL1R1.by.IL1 643k.PIP3.from.PIP2.by.Pi3k

ICS – failed to timely terminate

NuSMV SIM 2.5 857k.Csf1R.on 910k.Pi3k.by.Csf1R 643k.PIP3.from.PIP2.by.Pi3k

Maude <1 Over 100 transitions with tens of redundant transitions

Table A.10: “Kitano Macrophage” dish – G(¬(PIP3-CLm))

Tool SAT Time Counterexample generated:

solver secs

SAL-SMC – failed to timely terminate

SAL-BMC Siege 50.86 282k.Edg2.on 181.Pi3k.by.Gq 236k.Grk2.on 963k.CcR2.on 199k.TLR3.on

200k.Trif.by.TLR3 206.Traf6.by.Trif 716.P38a.on 64.Elk1.by.P38

610k.Fosgene.on

BerkMin 54.59 857k.Csf1R.on 939k.Shc.by.Csf1R#2 991k.Pparg.on 980k.LxR.on

199k.TLR3.on 200k.Trif.by.TLR3 206.Traf6.by.Trif 716.P38a.on

64.Elk1.by.P38 610k.Fosgene.on

zChaff 96.74 179k.TgfbR1.on 999k.Smad3.on 299k.Smad3.to.nuc 840.Smad4.to.cyto

199k.TLR3.on 200k.Trif.by.TLR3 206.Traf6.by.Trif 716.P38a.on

64.Elk1.by.P38 610k.Fosgene.on

ICS – failed to timely terminate

NuSMV SIM 3.5 741k.RxR.by.9cisRA 52.Elk1.by.Jnk 610k.Fosgene.on

Maude <1 Over 100 transitions with tens of redundant transitions

Table A.11: “Kitano Macrophage” dish– G(¬(Fosgene-on-NUc))
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC – failed to timely terminate

SAL-BMC Siege 55.22 199k.TLR3.on 200k.Trif.by.TLR3 206.Traf6.by.Trif 716.P38a.on

64.Elk1.by.P38 610k.Fosgene.on

BerkMin 53.72 857k.Csf1R.on 939k.Shc.by.Csf1R#2 991k.Pparg.on 980k.LxR.on

199k.TLR3.on 200k.Trif.by.TLR3 206.Traf6.by.Trif 716.P38a.on

64.Elk1.by.P38 610k.Fosgene.on

zChaff 95.17 179k.TgfbR1.on 999k.Smad3.on 299k.Smad3.to.nuc 840.Smad4.to.cyto

199k.TLR3.on 200k.Trif.by.TLR3 206.Traf6.by.Trif 716.P38a.on

64.Elk1.by.P38 610k.Fosgene.on

ICS – failed to timely terminate

NuSMV SIM – failed to timely terminate

Maude – –

Table A.12: “Kitano Macrophage” dish – AG(¬(Fosgene-on-NUc))
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC – failed to timely terminate

SAL-BMC Siege 194.66 609k.Csf2R.on 993k.Pi3k.by.Csf2R 643k.PIP3.from.PIP2.by.Pi3k

108k.Pdk1.by.PIP3 111k.aPkc.on 179k.TgfbR1.on 999k.Smad3.on

299k.Smad3.to.nuc 300.Mycgene.inhib 539.Jaks.by.IfngR

540k.Stat1.by.IfngR 702k.TnfR1.by.Tnfa 1018k.Traf1.Traf2.reloc

894k.Tradd.by.TnfR1 316.Smad7.by.Cbpp300 896.Rip.by.Tradd

583.Nik.on.1 369.Mekk1.by.Nik 148.Mek.by.Mekk1 000k.Erk.on

282k.Edg2.on 438k.Elk1.by.Erk 610k.Fosgene.on 198.Smad7.to.CLi

BerkMin 345.98 702k.TnfR1.by.Tnfa 894k.Tradd.by.TnfR1 896.Rip.by.Tradd

1018k.Traf1.Traf2.reloc 951k.Nik.on.3 369.Mekk1.by.Nik 148.Mek.by.Mekk1

000k.Erk.on 785k.Edg3.on 83k.Plcb.on 84k.IP3.by.Plc 869k.ItpR.open

321k.Ca2+.by.ItpR 96.Pi3k.by.Gbg 666k.Calm.on 26.Erk.xby.Dusp1

388k.Camk2.on 758k.nPkc.on-1 000k.Erk.on 925k.PtgeR2.on

510k.Pld.by.Pkc 838.Smad2.xby.Pkc 74k.Adcy2.on 438k.Elk1.by.Erk

741k.RxR.by.9cisRA 610k.Fosgene.on 980k.LxR.on

zChaff – failed to timely terminate

ICS – failed to timely terminate

NuSMV SIM 9.4 702k.TnfR1.by.Tnfa 52.Elk1.by.Jnk 1018k.Traf1.Traf2.reloc

898.Mekk1.by.Gck 148.Mek.by.Mekk1 000k.Erk.on 610k.Fosgene.on

Maude 2.8 Over 100 transitions with tens of redundant transitions

Table A.13: “Kitano Macrophage” dish – F(Fosgene-on-NUc)⇒¬(Erk-act-CLi) U Fosgene-on-NUc
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Tool SAT Time Counterexample generated:

solver secs

SAL-SMC – failed to timely terminate

SAL-BMC Siege 52.12 899k.P2Ry6.on 181.Pi3k.by.Gq 199k.TLR3.on 200k.Trif.by.TLR3

206.Traf6.by.Trif 716.P38a.on 64.Elk1.by.P38 610k.Fosgene.on 974k.IfnaR.on

BerkMin 52.95 1001k.Srebf1.Scap.Insig 179k.TgfbR1.on 997.Smad2.on 199k.TLR3.on

200k.Trif.by.TLR3 206.Traf6.by.Trif 716.P38a.on 64.Elk1.by.P38

610k.Fosgene.on 190.Smad157.to.nuc

zChaff 100.95 980k.LxR.on 925k.PtgeR2.on 96.Pi3k.by.Gbg#1 199k.TLR3.on

200k.Trif.by.TLR3 206.Traf6.by.Trif 716.P38a.on 64.Elk1.by.P38

610k.Fosgene.on 991k.Pparg.on

ICS – failed to timely terminate

NuSMV SIM 4.3 741k.RxR.by.9cisRA 52.Elk1.by.Jnk 610k.Fosgene.on

Maude 2.2 Over 100 transitions with tens of redundant transitions

Table A.14: “Kitano Macrophage” dish – F(Fosgene-on-NUc)⇒¬(¬(Erk-act-CLi) U Fosgene-on-NUc)

Tool SAT Time Counterexample generated:

solver secs

SAL-SMC – failed to timely terminate

SAL-BMC Siege 72.27 741k.RxR.by.9cisRA 199k.TLR3.on 200k.Trif.by.TLR3 206.Traf6.by.Trif

716.P38a.on 64.Elk1.by.P38 610k.Fosgene.on 857k.Csf1R.on

922k.Plcg.by.Csf1R 990k.Plcg.xby.Ptpn1

BerkMin 66.73 980k.LxR.on 199k.TLR3.on 200k.Trif.by.TLR3 206.Traf6.by.Trif

716.P38a.on 64.Elk1.by.P38 610k.Fosgene.on 857k.Csf1R.on

922k.Plcg.by.Csf1R 990k.Plcg.xby.Ptpn1

zChaff 126.38 980k.LxR.on 199k.TLR3.on 200k.Trif.by.TLR3 206.Traf6.by.Trif

716.P38a.on 64.Elk1.by.P38 610k.Fosgene.on 857k.Csf1R.on

922k.Plcg.by.Csf1R 990k.Plcg.xby.Ptpn1

ICS – failed to timely terminate

NuSMV SIM 5.4 741k.RxR.by.9cisRA 52.Elk1.by.Jnk 610k.Fosgene.on

Maude – failed to timely terminate

Table A.15: “Kitano Macrophage” dish – F(Fosgene-on-NUc) ⇒ ¬(G(¬(Erk-act-CLi)))



Appendix B

New Actors integrated in IOP

B.1 Actors: Introduction

The actor model is a mathematical model of concurrent computation, initially proposed by

Hewitt et al. in [39]. A wide range of computation paradigms can be expressed through the

actor model, which “directly supports encapsulation and sharing, and provides a natural

extension of both functional programming and object style data abstraction to concurrent

open systems” [22].

Actors are “self-contained, concurrently interacting entities of a computing system”

[22]. They communicate via asynchronous message passing. In response to a message that

it receives, an actor can make local decisions, create more actors, send more messages,

and designate how to respond to the next message received. It is worth mentioning that

the pool of actors in a computing system can be dynamically created and its topology can

change dynamically.

B.2 Integrating SAL in IOP

Our main idea was to make communication possible between SAL and formal reasoning

tools like Maude and PVS, which are already integrated as actors in the Interoperability

Platform [10]. The usual scenario would be, for example, Maude sending a query to

SAL, the latter executes the query and returns the result back to Maude. In order to

accomplish this, we had to take into account that IOP’s design is based on the actor model

of distributed computation [21].
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IOP consists of numerous actors that can interact and interoperate with each other

via asynchronous message passing, and some of them can even spawn other actors. The

IOP registry or the System actor plays the role of a “local post office” [11]. An actor in

IOP is a UNIX style process that has to be registered with the System actor according to

a simple procedure described in [11]. Part of the registration process involves allocating

three FIFO’s, or UNIX style named pipes, and redirecting the actor’s stdin, stdout, stderr

file descriptors to these special files.

The tools built into SAL have different execution behaviours. The majority of them

(i.e. sal-smc, sal-bmc, sal-path-finder, sal-deadlock-checker) evaluate a request and exit

after returning a result. On the other hand, one tool called Sal Simulator (i.e. sal-sim)

is a Scheme based system programmed as a “read-eval-print” loop. This means that sal-

sim waits in a “read-eval-print” loop for a request, evaluates the request, returns a result

and waits for another request. The Sal Simulator does not exit, unless it is terminated

explicitly. Thus, we have adopted two different strategies for integrating SAL tools into

IOP:

• For integrating the majority of SAL tools that exit after they return a result we have

developed two SAL actors which consist of two distinct C programs:

– A SalSpawner, which listens to clients actions and spawns by demand new ac-

tors called SalActors, which are enrolled with the System actor. The SalSpawner

makes sure each SalActor has a unique name (usually the name is SalActor<index>),

such that there are no name conflicts when registering the actor with the IOP

registry.

– A SalActor, which is composed of a parent and a child process. The child process

is the actual SAL process. The parent process monitors the error and output

stream of the child process via pipes and using a separate error thread. The

parent process redirects to stderr and stdout all the messages that are printed

by the SAL process to the error stream and respectively to the output stream.

After the child process dies (i.e. the SAL process terminates), the parent process

simply unenrolls itself from the IOP registry and terminates.

• For integrating the Sal Simulator into IOP we have developed a C application called

SalWrapper, which is in fact another SAL actor. This actor consists of two processes:
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the child process running sal-sim, and a parent or wrapper process acting as an

interface for the SAL tool and the underlying message system. The parent process

waits in an infinite loop for the user’s input, echoes the input to the child/tool, and

waits for a result from SAL. Similarly with the SalActor, the parent process within

the SalWrapper redirects to stderr and stdout all the messages that are printed by

the SAL process to the error stream and respectively to the output stream.

B.3 Creating and using the SAL actors

The SAL actors can be created or terminated either explicitly by sending the System actor

a request to either start or stop the actor, or by describing the desired actors at startup

in the .ioprc file, as described in the IOP manual [11]. We describe briefly a sample use of

these two different kinds of SAL actors.

B.3.1 Sample use of SalSpawner and SalActor

The SalSpawner actor must be created in the first place. This is done by sending the IOP

registry (or the System actor) the following message:

(user start salspawner iop_sal_spawner *FIFO_IN* *FIFO_OUT*)

To create different SAL actors, one must send the SalWrapper actor the following message

repeatedly:

(user opensalactor)

Once this is done, the client can choose any SAL actor from IOP’s drop-down list (they are

indexed from 0,1,...) and send a request to the respective actor. Below are some sample

requests that can be sent to sal-bmc, sal-smc, sal-path-finder and sal-deadlock-checker

using the SAL actors:

(user sal-bmc peterson livenessbug1)

(user sal-smc peterson mutex)

(user sal-path-finder -d 100 peterson system)

(user sal-deadlock-checker peterson system)
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After the SAL processes terminate, the respective SAL actors unenroll from the IOP

registry and terminate automatically. In order to terminate and unenroll the SalSpawner

actor from the IOP registry, the following request must be sent to the System actor:

(user stop salspawner)

B.3.2 Sample use of SalWrapper

To create the SalWrapper actor the following message must be sent to the System actor:

(user start SalWrapper iop_sal_wrapper)

Once this is done, the only SAL tool which can be tested using this actor is sal-sim. The

reason for this has been explained above. Therefore, in order to send requests to the Sal

Simulator, we need to first load its source, import a SAL context, start the simulation

session and perform the actual requests. These steps must be performed in a strict order,

as demonstrated below:

(sal/load-source! "sal-simulator-front-end.scm")

(import! "peterson")

(start-simulation! "system")

(step!)

(display-curr-trace)

(display-curr-states)

To exit the Sal Simulator we need to send the SalWrapper actor the following message:

(exit)

This will not only kill the SAL tool, but it will also terminate and unenroll the SalWrapper

actor from the IOP registry.


